01-02 Relations entre les ensembles

Définition et notation

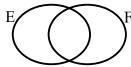
L'ensemble ne contenant aucun élément est appelé et se note

Remarque

L'ensemble vide tous les ensembles.

Définitions et notations

Soient deux ensembles E et F.

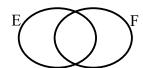


L'intersection de E et F est l'ensemble des éléments appartenant à la fois à E et F.

Cet ensemble se note et se lit «».

La **réunion** de E et F est l'ensemble des éléments appartenant à E ou F (ou aux deux).

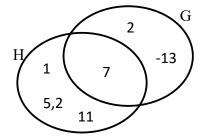
Cet ensemble se note et se lit «».



Exemple

On considère les ensembles G et H ci-contre.

- =
- =



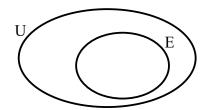
Définition et notations

Soient deux ensembles E et U tels que $E \subset U$.

On appelle ensemble complémentaire de E dans U

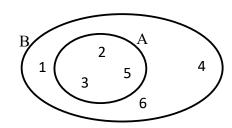
l'ensemble des éléments appartenant à mais pas à

On note cet ensemble $C_U \ E$.



Exemple

Dans la représentation ci-contre, on a = = =

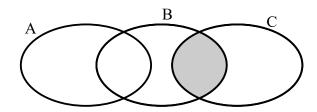


01-02 Applications du cours

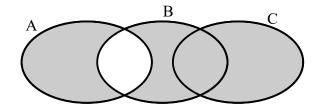
Application 1

Dans chaque cas, écrire à quel ensemble correspond la région grisée.

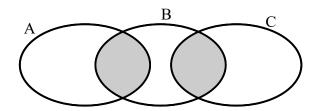
1.



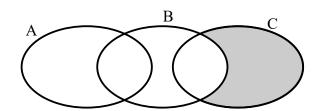
4.



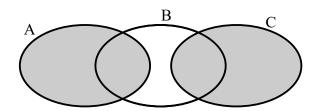
2.



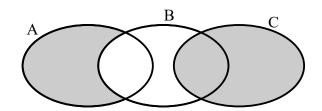
5.



3.



6.



Application 2

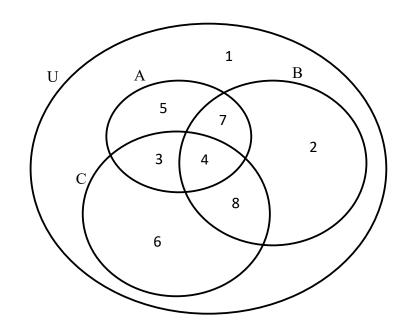
On considère ensembles A, B, C et U ci-contre.

Compléter:

$$A \cap (B \cap C) = \dots$$

$$B \cup (A \cap C) = \dots$$

$$(B \cup A) \cap C = \dots$$



$$C_U A = \dots$$

$$(C_U C) \cap (C_U A) = \dots$$

$$(C_U B) \cap B = \dots$$

$$C_U$$
 (C \cup A) =

$$(C_U C) \cup (C_U A) = \dots$$

$$C_A(A \cap C) = \dots$$

$$(C_U C) \cup A = \dots$$

$$(C_U B) \cap A = \dots$$

$$C_{B\cup C}$$
 (B \cap C) =